
Journal of Hydrology 538 (2016) 49–62
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/ locate / jhydrol
Use of beta regression for statistical downscaling of precipitation
in the Campbell River basin, British Columbia, Canada
http://dx.doi.org/10.1016/j.jhydrol.2016.04.009
0022-1694/� 2016 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Department of Civil and Environmental Engineering,
Western University, London, ON N6A 3K7, Canada.

E-mail addresses: sohomiitb@gmail.com (S. Mandal), roshan@vit.ac.in
(R.K. Srivastav).
Sohom Mandal a,⇑, Roshan K. Srivastav b, Slobodan P. Simonovic a

aDepartment of Civil and Environmental Engineering, Western University, London, ON, Canada
b School of Civil and Chemical Engineering, VIT University, Vellore, Tamil Nadu, India

a r t i c l e i n f o s u m m a r y
Article history:
Received 9 November 2015
Received in revised form 20 March 2016
Accepted 3 April 2016
Available online 9 April 2016
This manuscript was handled by Andras
Bardossy, Editor-in-Chief, with the
assistance of Uwe Haberlandt, Associate
Editor

Keywords:
Climate change
CART
K-means clustering
Beta regression
Statistical downscaling
Impacts of global climate change on water resources systems are assessed by downscaling coarse scale
climate variables into regional scale hydro-climate variables. In this study, a new multisite statistical
downscaling method based on beta regression (BR) is developed for generating synthetic precipitation
series, which can preserve temporal and spatial dependence along with other historical statistics. The
beta regression based downscaling method includes two main steps: (1) prediction of precipitation states
for the study area using classification and regression trees, and (2) generation of precipitation at different
stations in the study area conditioned on the precipitation states. Daily precipitation data for 53 years
from the ANUSPLIN data set is used to predict precipitation states of the study area where predictor vari-
ables are extracted from the NCEP/NCAR reanalysis data set for the same interval. The proposed model is
applied to downscaling daily precipitation at ten different stations in the Campbell River basin, British
Columbia, Canada. Results show that the proposed downscaling model can capture spatial and temporal
variability of local precipitation very well at various locations. The performance of the model is compared
with a recently developed non-parametric kernel regression based downscaling model. The BR model
performs better regarding extrapolation compared to the non-parametric kernel regression model.
Future precipitation changes under different GHG (greenhouse gas) emission scenarios also projected
with the developed downscaling model that reveals a significant amount of changes in future seasonal
precipitation and number of wet days in the river basin.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Impacts of the climate change on hydro-meteorology include
earlier snowmelt, lower flows in summer and fall, and an increase
in the frequency of flooding and drought in many regions of the
world. It has been reported that due to climate change, the fre-
quency of warmer days has increased where the frequency of cold
nights has decreased over the Canadian landmass during 1950–
2010 (Warren and Lemmen, 2014). A stronger warming trend has
been found in the west, and the northern part of Canada compared
to the east coast. Mekis and Vincent (2011) reported that in Canada
especially on the west coast the total precipitation has increased in
fall and spring while it has decreased in winter during the period of
1950–2009.
According to IPCC (2007) increase in global average surface
temperature since the mid-20th century is very likely due to an
increase of greenhouse gasses (GHGs) concentration in the atmo-
sphere and changes in surface temperature affects atmospheric cir-
culation pattern which influences precipitation. Moreover, the
global climate will continue to change in the future as a result of
continued emissions of GHGs into the atmosphere. Therefore, we
can anticipate that there will be further changes to global and
regional temperature and precipitation patterns in the future.
Altered patterns of future precipitation will affect the regional
hydrology and water resources. Due to significant changes in pre-
cipitation patterns in past decades, water resources managers and
planners are expressing interest in future precipitation projection
under changing climate condition. Generally, impacts of climate
change on regional water resources are assessed for future climate
scenarios obtained from Global Climate Model (GCM) simulations.
GCMs represent the state of the art with respect to the simulation
of global climate variables in response to emission scenarios of
greenhouse gasses. GCMs can satisfactorily model smoothly vary-
ing fields such as mean sea level pressure, but often fail to capture
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non-smooth fields such as precipitation (Hughes and Guttorp,
1994). In addition, the spatial scale of GCM output is very coarse
(>100 km2). Therefore on a regional scale, capturing the impacts
of climate change on hydro-meteorological variables (e.g. temper-
ature, precipitation, soil moisture) is more difficult and uncertain.
At the catchment level (<50 km), downscaling of coarsely gridded
GCM data is necessary for a better understanding and assessment
of future hydrologic conditions in response to climate change.

Downscaling methods can be used to improve the spatial reso-
lution of GCM output to overcome the challenge of assessing cli-
mate related impacts on water resources at the catchment scale.
Downscaling methods are broadly classified as dynamic or statisti-
cal. Dynamic downscaling is based upon nesting a finer scale regio-
nal climate model (RCM) (up to 10 km � 10 km horizontal
resolution) within GCMs (Wood et al., 2004). The major drawbacks
of dynamic downscaling are model complications, high computa-
tional requirements, their dependence on boundary conditions
obtained from GCMs and lack of transferability to different regions.
Statistical downscaling (SD) methods use parametric/nonparamet-
ric and/or linear/nonlinear relationships between predictor and
predictand variables (Wilby and Wigley, 1997). Statistical down-
scaling is more adaptable, flexible and popular because of low
computational requirements, simple modeling structure and easy
modifications for use at various locations. SD methods developed
so far are can be classified into three groups: (a) classification/
weather typing methods (Hay et al., 1991; Hughes and Guttorp,
1994; Hughes et al., 1999; Mehrotra and Sharma, 2005); (b) regres-
sion/transfer function methods (Chen et al., 2014; Ghosh, 2010;
Goyal and Ojha, 2010; Hashmi et al., 2009; Kannan and Ghosh,
2013; Von Storch et al., 1993; Wilby et al., 2002; Wilby et al.,
1999) and (c) weather generators (WG) (Wilks, 1999; Wilks and
Wilby, 1999; Sharif and Burn, 2006; Eum and Simonovic, 2012;
Lee et al., 2012; King et al., 2014; Srivastav and Simonovic, 2014).

Weather typing approaches develop the relationship between
local climate and atmospheric circulation variables based on a
given weather classification scheme. The observed local climate
variables are related to weather classes which include principal
component analysis (PCA) (Schoof and Pryor, 2001; Wetterhall
et al., 2005) fuzzy rules (Bardossy et al., 1995), canonical correla-
tion analysis (CCA) (Gyalistras et al., 1994), analogues procedure
(Martin et al., 1997) or other pattern recognition methods based
on correlation (Wilby and Wigley, 1997). The major drawbacks of
this approach are the stationary relationships between local cli-
mate variables and different types of atmospheric circulation and
the additional effort for weather classification. Non-stationarities
are inherent traits of the climate system and can be observed in
different spatio-temporal scale (Hertig and Jacobeit, 2013). Hence,
ignoring the nonstationary relationships between climate variables
may mislead the downscaling process. Transfer function based
models usually build a statistical relationship between GCM or
RCM outputs (large scale predictor) and local-scale climate vari-
ables (predictand). Generally multivariate linear or nonlinear
regression (Chen et al., 2014; Vrac et al., 2007), non-parametric
regression (Kannan and Ghosh, 2013; Sharma and O’Neill, 2002)
and support vector machine (SVM) approach (Ghosh, 2010;
Tripathi et al., 2006) are used for deriving those relationships.
These approaches are widely used and known as ‘perfect-prog
nosis’ downscaling methods. Weather generators are statistical
models that stochastically simulate random sequences of synthetic
climate variables that preserve statistical properties of observed
climate data (Dibike and Coulibaly, 2005; Hashmi et al., 2011;
Khan et al., 2006; Sharif and Burn, 2006).

In spite of progress made in the development of downscaling
models in the past, the challenges still exist in representing tempo-
ral and spatial variability in the generated sequences (Wilby et al.,
2004), accurately generating extremes (maximum and minimum)
(Pour et al., 2014) and generating multisite sequences with spatial
dependence. Most of the models developed in the past have failed
to capture spatial dependence in rainfall occurrence and they
assume that the probability distributions of observed and future
climate variables remain the same, which can be a limiting
assumption. Raje and Mujumdar (2009) developed a conditional
random field (CRF) downscaling method which does not require
the assumption of independence for climate variables and their
distribution. In this method, four surface flux variables (precipita-
tion flux, surface temperature, maximum and minimum surface
temperature) and four surface/pressure variables (specific humid-
ity, sea level pressure, U wind and V wind) are needed to maintain
spatial and temporal dependence which make this method compu-
tationally demanding. In addition, the CRF method moderately
captures spatial correlation and also overestimates the mean value
of the predictand (precipitation). Individually downscaling at mul-
tiple stations may be the reason for poor spatial correlations and
discretization of historical rainfall data into different classes with-
out confirming an exact number of rainfall classes using clusters
validity test may produce bias toward over-prediction of mean
precipitation values at different stations. For this reason non-
parametric statistical methods like K-nearest neighbors (K-nn)
(Brandsma and Buishand, 1998; Eum and Simonovic, 2012; King
et al., 2014; Sharif and Burn, 2006; Young, 1994) or Kernel density
estimator are referred in the literature as plausible approaches for
the downscaling purposes (Kannan and Ghosh, 2013; Mehrotra
and Sharma, 2010). Although non-parametric methods can suc-
cessfully capture the spatial dependence of observed data, they
often fail to capture extreme events in the case of precipitation.
Markov based downscaling models (Hughes and Guttorp, 1994;
Mehrotra and Sharma, 2005; Mehrotra and Sharma, 2007) perform
satisfactory in capturing spatial variability of daily precipitation
but they fail to reproduce the variability of a non-stationary cli-
mate as exogenous climate predictors are not considered.

In spite of considerable progress in development of downscal-
ing methods, especially for simulation of precipitation, challenges
still exist in accurately capturing extreme behavior in generated
precipitation sequences, simulating multisite sequences with real-
istic spatial and temporal dependence (Raje and Mujumdar, 2009).
Moreover, downscaling method should be efficient and computa-
tionally inexpensive to simulate the underlying processes present
in the observed data. Recently, Kannan and Ghosh (2013) devel-
oped a multisite statistical downscaling model using a non-
parametric kernel density function. Exogenous climate predictors
were used in this method for generating multisite precipitation.
This method encouraged us to develop a statistical downscaling
model based on a new regression approach.

In this study, we propose a new statistical downscaling
approach which considers the historical effect of exogenous cli-
mate variables for the generation of multisite precipitation
amounts. Since the occurrence of precipitation is influenced by glo-
bal circulation patterns, in this approach we derived precipitation
states in the river catchment using a classification and regression
tree (CART) (Breiman et al., 1984). Modeling spatial dependence
is the biggest challenge in downscaling (Yang et al., 2005) and it
is addressed here in an innovative way.

Precipitation states of the basin are obtained from large scale
circulation patterns to capture the spatial patterns within the
basin. We also use multivariate beta regression model to down-
scale multisite precipitation amounts conditioned on precipitation
states of the catchment.

Based on the precipitation states, beta regression is used to gen-
erate precipitation at each individual location within the catch-
ment. This regression method based on the beta distribution has
proven to be very versatile and flexible to model exogenous vari-
ables (Ferrari and Cribari-Neto, 2004) and is novel in its application



Table 1
Salient features of precipitation stations in the Campbell River basin, BC, Canada.

Station Elevation
(m)

Latitude
(�N)

Longitude
(�W)

Station
abbreviation

Elk R ab Campbell Lk 270 49.85 125.8 ELK
Eric creek 280 49.6 125.3 ERC
Gold R below Ucona R 10 49.7 126.1 GLD
Heber river near gold river 215 49.82 125.98 HEB
John hart substation 15 50.05 125.31 JHT
Quinsam R at argonaut Br 280 49.93 125.51 QIN
Quinsam R nr Campbell R 15 50.03 125.3 QSM
Salmon R ab Campbell div 215 50.09 125.67 SAM
Strathcona dam 249 49.98 125.58 SCA
Wolf river upper 1490 49.68 125.74 WOL
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as a statistical downscaling technique. For model performance
evaluation, the results obtained from the proposed method are
compared with those obtained from a recently developed model
based on Kernel density estimation (Kannan and Ghosh, 2013).
The primary objective of the comparison is to analyze the advan-
tages and disadvantages of the proposed beta regression based
downscaling method.

The methodology is developed in two steps. First, precipitation
states are predicted using the CART algorithm. Second, we generate
time series of multisite daily precipitation by downscaling outputs
of CanESM2 for a historical time period (1983–2005) and a future
time period (2036–2065). The proposed downscaling method is
applied to a case study in the Campbell River basin, British Colum-
bia, Canada (Fig. 1). Information regarding case study area and
datasets used for this study are given in the next section followed
by methodology. Next model application is discussed followed by
results and discussion. Summary and conclusions are presented
in the last section of this report.
2. Case study area and data used

Campbell River is situated in between the dry east coast and
wet west coast climate on the Vancouver Island, Canada. The total
drainage area of this basin is approximately 1856 km2 with a
length of 33 km from the origin (Strathcona provincial park). The
Campbell River basin consists of three lakes namely Buttle Lake
and Upper Campbell Lake, Lower Campbell Lake and John Hart
Lake. Campbell River system produces 2.5% of total BC Hydro’s
hydroelectric power which is equivalent to 11% of Vancouver
Island’s annual energy demand (BC Hydro Generation Resource
Management, 2012). In this river basin, streamflow is a mixture
of melting snow and rainfall. Generally, the streamflow is high dur-
ing fall and spring and low during the summer season. The salient
features (longitude, latitude, elevation) of the gauging stations in
the basin are given in Table 1.

Historical daily precipitation data (0.1� latitude � 0.1� longi-
tudes) for a 40 years span (1961–2013) have been obtained from
the ANUSPLIN Data Set, Environment Canada (Hutchinson and
Xu, 2013). ANUSPLIN data is developed using ‘‘thin plate smooth-
ing splines” algorithm. This technique interpolates climate vari-
ables as a function of latitude, longitude, and elevation. For this
study, the daily precipitation data is used at ten locations covering
Fig. 1. The Campbell River basin with
the entire Campbell River basin. Large-scale climate circulation
patterns govern the regional climate. Therefore, selection of the
predictors is necessary for the downscaling process (Wetterhall
et al., 2005; Wilby et al., 2004). According to Wilby et al. (1999),
predictors used for downscaling need to be: (a) easily available,
(b) reliably simulated and (c) strongly correlated with response
variable (precipitation in this case). Considering those conditions,
daily maximum and minimum air surface temperature (Tmax
and Tmin), mean sea level pressure (mslp), specific humidity
(hus) at 500 hPa, zonal (u-wind) and meridional (v-wind) wind
are used as predictors.

Due to inadequate historical climate data for a longer period,
predictor data is extracted from the NCEP/NCAR (National Centers
for Environmental Prediction/National Center for Atmospheric
Research) reanalysis dataset (Kalnay et al., 1996) for 53 years span-
ning 1961–2013. NCEP/NCAR data set is a combination of physical
process and model forecast gridded data at the 2.5� � 2.5� spatial
resolution. In the context of GCM outputs downscaling, historical
data from CanESM2 (1983–2013) is used for proposed model per-
formance evaluation. CanESM2 (2.813� latitude � 2.79� longitude)
is a second generation earth system model from the Coupled
Model Inter-comparison Project (CMIP5) developed by the Cana-
dian Centre for Climate Modeling and Analysis.

ANUSPLIN, NCEP/NCAR and GCM (CanESM2) data have a differ-
ent spatial resolution. Therefore, all the data sets are spatially
interpolated to a location of interest (gauging station) using
inverse distance square method (Gaur and Simonovic, 2013). Six
the location of gauging stations.
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climate variables (Tmax, Tmin, mslp, hus, u-wind and v-wind) at
ten locations in the basin are used as model predictors where pre-
cipitation is model predictand.

Standardization procedure (Wilby et al., 2004) is applied to the
predictors data to reduce the systematic bias among the variable
means and standard deviations. Standardization is carried out by
subtracting the mean and dividing by standard deviation from all
respective variables. A 30 years span (1961–1990) is considered
as a model training period, where 23 years (1991–2013) daily data
is used for model validation. Predictors for a particular station are
expected to have a high correlation with other nearby stations
which may lead to the multicollinearity problem (Ghosh, 2010).
Multicollinearity is a statistical phenomenon which refers to highly
correlated predictors in multiple regression analyses. It occurs
when predictors are not only correlated with response variable
but also to each other. Multicollinearity may lead to larger changes
in the regression model estimation for small changes in the data.
Therefore, it is necessary to remove multicollinearity from the pre-
dictor variables (Salvi et al., 2013). Apart from this, the model is
expected to be computationally inexpensive for its multiple
dimensions. Now if the dimensions are reduced without consider-
ing the internal variability and patterns of the data, it may lead us
to an erroneous model result. Hence, to reduce the multicollinear-
ity and dimensionality, the principal component analysis (PCA) is
used. PCA is a powerful statistical tool which can identify patterns
in multidimensional data. On the other hand, it can reduce dimen-
sions without reducing the internal variability of the original data.
There are no clear rules for choosing a number of principal compo-
nents that explains the maximum percentage of variance. Srivastav
and Simonovic (2014) investigated the performance of a multisite
weather generator with different principal components and con-
sidered first principal component for their study. Kannan and
Ghosh (2013) adopted Kasier’s rule for selecting principal compo-
nents that explain more than the average amount of total variance.
In this study, we considered first five principal components that
explain 97% variability of the original data (Fig. 2).

3. Methodology

The details of beta regression based statistical downscaling
technique conditioned to the precipitation states are outlined in
this section. The proposed modeling framework is shown in
Fig. 3. This framework is divided into two parts. In the first part
Fig. 2. Cumulative percent of variance explained by principal components.
(Fig. 3(a)), the daily precipitation states are generated using a
supervised classification technique, namely CART (classification
and regression trees) wherein the second part (Fig. 3(b)), the daily
precipitation sequences are generated for a particular location
using multivariate beta regression. CART classifies predictor vari-
ables or builds relationship in terms of explanatory power and
variance using an ‘‘acyclic tree”. The following subsections describe
in details procedures for generation of precipitation states (part 1)
and daily precipitation generation (part 2).
3.1. Generation of daily precipitation states

The daily precipitation state is a qualitative representation of
precipitation status for a given day in a particular region where
multiple sites of interest belong. For predicting daily precipitation
states in the river basin, CART algorithm coupled with an unsuper-
vised classification method (K-means clustering) is used following
Kannan and Ghosh (2013). K-means clustering helps to identify
daily precipitation states in the river basin. CART is a classification
and regression algorithm based on ‘if-then’ logic. The advantages of
using CART are: (1) it does not follow a prior statistical distribution
of predictors; (2) it is flexible and efficient with high dimensional
data; and (3) it can effectively deal with a mixture of categorical,
discrete and continuous predictor variables (James et al., 2013).
The procedure for daily precipitation states estimation is explained
in Fig. 3(a). It includes few steps as follows:

Step-I: Use K-means clustering technique for identifying precip-
itation states from the observed ANUSPIN precipitation data
(1961–1990). For an optimum number of clusters, we used
cluster validity index e.g. Silhouette Index, Davis–Bouldin
index, Dunn Index and Connectivity measures (Brock et al.,
2008).
Step-II: Standardize the NCEP/NCAR predictor variables by sub-
tracting mean and dividing the data by standard deviation.
After standardization, PCA is used to reduce the dimension
and remove multicollinearity from the standardized predictor
variables. Preserve the principal component/scores and Eigen
vectors/factors for the next step.
Step-III: Apply the standardization procedure and PCA to histor-
ical NCEP/NCAR predictor data and historical GCM predictor
data (CanESM2) for a different time period.
Step-IV: Build the CART with the help of principal components
obtained from NCEP/NCAR predictor data and precipitation
states obtained from K-means.
Step-V: Apply the CART model to GCM historical data (1983–
2005) and historical NCEP/NCAR data (1991–2013) to derive
rainfall states for a different time period and compare statistics
with observed historical data for the same time period. This two
different historical time periods are used for validate the pro-
posed downscaling model with GCMs and NCEP/NCAR data set.
Step-VI: For calculating future precipitation states under differ-
ent climate change scenarios the CART model is applied to stan-
dardized future GCM (CanESM2) predictor data (2036–2065).

Preserving the spatial correlation and capturing the variability
of predictand are the important aspects of the statistical downscal-
ing. Hence, it will be more acceptable if the procedure provides for
derivation of precipitation states first and then generate precipita-
tion amount. Precipitation states of the river basin combined with
data driven regression approach (beta regression) preserve the
spatial dependence in the precipitation fields. This combined pro-
cedure retains the marginal and joint density structure of historical
precipitation series which includes nonlinearity and state
dependence.



Fig. 3. The schematic of proposed downscaling framework. (a) Prediction of precipitation state using CART. (b) Multivariate beta regression model for synthetic precipitation
generation.
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3.2. Multisite precipitation generation

For multisite precipitation generation, a relationship between
predictors and predictand climate variables has to be developed.

Pt ¼ FRðXt=StÞ ð1Þ
The generalized relationship between predictors and predictand

is described by Eq. (1) where Pt is the precipitation at a certain sta-
tion at time t, Xt is predictor variables at time t and St is precipita-
tion state of the river basin at time t.

Generally this kind of relationship is developed using regression
(parametric/non-parametric) or probabilistic approach (Wilby and
Harris, 2006; Mehrotra and Sharma, 2007; Srivastav and
Simonovic, 2014). In this study, beta regression is applied to model
the above mentioned relationship. The predictors used for build
the regression model are current day principal components of
reanalysis predictor data and current day precipitation states from
CART where predictand is present day precipitation at different
stations (generated separately).

3.2.1. Beta regression
Regression analysis builds a relationship between indepen-

dent variables (x) and dependent variable (y). In this study,
large-scale global climate variables are independent variables
or predictors and precipitation is dependent variable or predic-
tand. The relationship between them can be formulized as
follows:

yi ¼ f ðxiÞ þ ei; i ¼ 1;2; . . .n ð2Þ
where ei is a normally distributed non-zero error term. If the
relationship is linear then the expression (2) is modified as
follows:

y ¼ xTbþ ei ¼ b0 þ x1b1 þ x2b2 þ � � � xdbd þ ei ð3Þ
where x is a vector of predictor variables with dimension d and
b is a coefficient vector. The relationship in Eq. (3) is developed
using beta regression (BR). This regression approach follows the
beta distribution. The beta distribution is very flexible for mod-
eling dependent variables since its density can assume a number
of different shapes based on its parameters. Apart from this, the
beta distribution is heteroskedastic and can successfully accom-
modate asymmetric data (Ferrari and Cribari-Neto, 2004;
Schmid et al., 2013). Another advantage of using beta distribu-
tion is that it can model nonlinear relationship (Simas et al.,
2010). The beta density function of the predictand can be
written as:
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f ðy;l;/Þ ¼ Cð/Þ
Cðl/ÞCðð1� lÞ/Þ y

l/�1ð1� yÞð1�lÞ/�1
;

0 < y < 1;0 < l < 1;/ > 0 ð4Þ
l is the mean of predictand, / is precision parameter, y is depen-
dent variable and C(�) is gamma function. Beta distribution includes
gamma function. In past, gamma function was successfully imple-
mented to model precipitation (Groisman et al., 1999; Stern and
Coe, 1984; Wilks and Wilby, 1999). The shape of beta density func-
tion can change depending on the values of l and / which help to
estimate and model underlying structure of the data without
assuming any functional form of estimators (Schmid et al., 2013).
If l ¼ 1=2 then the model is symmetric and if l– 1=2 then the
model becomes asymmetric.

The proposed regression model assumed that the dependent
variable or predictand is beta distributed and constrained to the
unit interval (0, 1). Therefore any dependent variable bounded in
an interval (a, b) where a and b are known scalar values (a < b) need
to be scaled to (0, 1) interval. For this case y (predictand) is scaled
into (0, 1) interval using the following two steps:

Step (i):

y0 ¼ ðy� aÞ=ðb� aÞ ð5Þ
Step (ii):

Prscaled ¼ ðy0ðn� 1Þ þ 0:5Þ=n; ð6Þ
where y is precipitation data, n is sample size and Prscaled is scaled
precipitation data into (0, 1).

To relate the conditional expectation function Eðy=xÞ for multi-
variate predictors, beta regression assumes a predictor-predictand
relationship given by

gðltÞ ¼
Xk

i¼1

xtibi ð7Þ

xti ¼ ðxt1; . . . ; xtkÞ; t ¼ 1; . . . ;n ð8Þ

bi ¼ ðb1; . . .bkÞTðb 2 RkÞ ð9Þ
where bi is a vector of unknown regression parameters and xti are
observations of k covariates (k < n). g(�) is strictly monotonic and
invertible link function that maps (0, 1) into R. Many types of link
functions are possible here (e.g. probit, logit, log–log). Logit trans-
formation is used for this work following Ferrari and Cribari-Neto
(2004). Maximum likelihood estimation (MLE) is used to estimate b.

One of the major challenges of downscaling methods is genera-
tion of precipitation data outside of the observed range. A pertur-
bation technique is used with stochastic precipitation
simulations and enhances the generation of extreme precipitation
following King et al. (2015). The following equation is used for
perturbation:

yj
ppt;tþi ¼ kpptx

j
ppt;tþi þ ð1� kpptÞztþi; t ¼ 1;2; . . .n ð10Þ

where yj
ppt;tþi is the perturbed precipitation value for t + ith day in

jth location, x j
ppt;tþi is precipitation value for t + ith day in jth location

and t is number of days and ztþi comes from two parameter log-
normal distribution (King et al., 2015). kppt value varies in between
0 and 1 (0 means data series are totally perturbed and 1 means no
perturbation in the results) and larger value of kppt is reasonable to
preserve spatial correlation. It has been found that kppt = 0.9 can
adequately preserve spatial correlation and other statistics (i.e.
mean, variance) while it can still produce precipitation values out-
side of the observed range (King et al., 2015).

KNN algorithm is used to resample a block of days and ranks
them. A cumulative probability distribution is calculated based
on a day’s rank. The next day precipitation is selected based on this
probability distribution and a random number u (0, 1) which
selects the closest day. For instance, precipitation of a day which
is similar to present day precipitation has a higher probability of
being selected and that helps to preserve temporal correlation of
climate variables. After the resampling, perturbation is used to
reshuffle the precipitation values. This process can be repeated
several times for generating alternative precipitation realizations.

3.3. Model application

An unsupervised K-means clustering method is used to identify
historical daily precipitation states (1961–1990) in the river basin.
The optimum number of clusters or precipitation states are
obtained from cluster internal validity tests e.g. Connectivity mea-
sure, Silhouette index and Dunn index and Davis–Bouldin index
(Brock et al., 2008). Each validity index has different criteria for
identification of an optimum number of clusters. For an optimum
number of clusters, connectivity index value should be minimized
where Silhouette index, Davis–Bouldin index and Dunn index
value should be maximized. All four indices are tested for a num-
ber of clusters varying from 2 to 10 (Fig. 4). Apart from cluster
validity index there is a hydrological aspect in selecting number
of precipitation states or optimum number of clusters (Kannan
and Ghosh, 2010). Supplementary Table-1 (ST1) shows cluster cen-
troids calculated using k-means clustering technique for clusters
varying from 2 to 4. It is found that the dry condition states (low
cluster centroid value) are well separated from the other states
in all clusters (ST1). To preserve the daily temporal correlational
among predictor (large scale global climate variable) and predic-
tand (precipitation) dry state condition need to be identified.
Hence, the number of clusters exceeding 2 is considered following
Kannan and Ghosh (2010). Cluster validity indices show that the
optimal number of clusters should be greater than 2 where
Davis–Bouldin index indicates 3 clusters as the optimal number.
After the cluster validity measure analysis and consideration of
other hydrologic issues, 3 clusters are selected to be used in this
study. These clusters divide precipitation states into ‘‘almost dry”,
‘‘medium” and ‘‘high,” based on precipitation amount stored in the
cluster centroid. Daily precipitation amount divided into different
clusters provides more realistic prediction of precipitation states
(Kannan and Ghosh, 2010).

CART model is constructed to predict precipitation states in the
river basin using principal components derived from NCEP/NCAR
predictor data and historical daily precipitation states obtained
from the K-means clustering. CART prunes a classification tree con-
ditioned to daily precipitation states. Principal components of
NCEP/NCAR predictor variables for 30 years period (1961–1990)
are used to prune the tree where the remaining 23 years of data
(1991–2013) is used for validation of the model. It has been
reported that the performance of classification tree was acceptable
using NCEP/NCAR data with a lag-1 precipitation state (Kannan
and Ghosh, 2010). The following relationship is used for building
the CART model:

st ¼ ffpt ;pt�1; st�1g ð11Þ
where st is precipitation state, pt is set of climate variables on tth
day and pt�1=st�1 is precipitation state/set of climate variables on
(t � 1)th day.

Therefore, CART model build in this study used principal com-
ponents of NCEP/NCAR predictor variables of the current day and
the previous day with lag-1 precipitation state. BR model con-
structs a featured linear space based on identified daily precipita-
tion states for the daily multisite precipitation generation. The
linear space contains standardized and dimensionally reduced
NCEP/NCAR predictors and corresponding daily observed



Fig. 4. Cluster validity measures.
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precipitation data for 30 years period (1961–1990). For BR model
validation, the remaining 23 years (1991–2013) of standardized
and dimensionally reduced NCEP/NCAR predictors are used condi-
tioned to the precipitation states. In the context of GCM data
downscaling and model performance test using GCM outputs,
standardized and dimensionally reduced historical (1983–2005)
predictors from the CanESM2 are downscaled and compared with
daily observed data for the same period.

The proposed BR model simulated output is compared with the
multi-site non-parametric kernel regression (KR) model (Kannan
and Ghosh, 2013). The kernel regression model has been used for
generating multisite precipitation in the Mahanadi river basin,
India. This model combines K-means, bias-correction, PCA, CART
and kernel regression to generate synthetic precipitation. Simula-
tion results from the BR model without rainfall state conditioning
(BRWS) is also compared with the proposed BR model results in
order to better understand the role of rainfall state in the down-
scaling process.

The comparison details and advantage of the BR model are dis-
cussed in the next section. A brief description of models used in
this study with their acronyms is listed in Table 2.
4. Results and discussion

The objective of this study is to demonstrate the efficacy of the
proposed multisite BR model. Using BR model, 30 independent
realizations are generated for the validation period (1991–2013).
The present downscaling method is also applied to GCM
Table 2
Brief description of models used for comparison.

Acronym Description

BR Beta regression conditioned to precipitation states
BRWS Beta regression not conditioned to precipitation states
KR Kernel regression conditioned to precipitation states
(CanESM2) simulated standardized predictor data for a future time
(2036–2065) periods. Proposed BR model performance evaluation
is based on the reproduction of historical statistics such as (1) tem-
poral mean and standard deviation, (2) seasonal total precipitation
(3) temporal and spatial cross correlation, and (4) preservation of
quantiles. Results from different downscaling approaches such as
BR, BRWS and KR are evaluated for spatial and temporal variation
of precipitation over the river basin.
4.1. Model evaluation over the validation period

4.1.1. Comparison of statistical characteristics
The statistical characteristics (such as mean and standard devi-

ation) from BR, BRWS and KR model applications are shown in
Table 3 and they are compared with observed precipitation for
the validation period (1991–2013) at ten downscaling locations.
Student t-test is conducted to check if the means of model simu-
lated precipitation series at different stations similar to those of
the observed data. The hypothesis is stated as ‘‘H0: means of two
series are the same” at 5% significance level. Results from the
t-test are presented in Table 4. It can be seen that the BR model
can generate precipitation time series similar to observed precipi-
tation at different stations except two locations: GLD andWOL. The
BRWS and KR model results show mixed outcomes at a 5%
significance level.
4.1.2. Basin average annual and monthly precipitation
Streamflow of the Campbell River is affected by snowmelt and

rain. Peak streamflows are observed in spring and fall while the
low flows are usually experienced during the summer and winter
(Zwiers et al., 2011). Hence, annual or seasonal changes in precip-
itation (snow/rain) will affect streamflow in the river. We com-
pared the annual and monthly variability of basin average
precipitation (50th percentile estimates) simulated from different
models for the validation period Fig. 5(a) and (b) compares annual
and mean monthly precipitation generated by BR, BRWS and KR



Table 3
Mean and standard deviation for observed and simulated precipitation (mm) series.

Downscaling location

ELK ERC GLD HEB JHT QIN QSM SAM SCA WOL

Mean
Observed 6.01 5.91 7.29 7 4.56 5.45 4.53 5.5 5.47 6.31
BR 5.4 7.2 7.37 6.65 3.95 3.49 3.94 4.27 4 7.16
BRWS 3.2 5.52 6.49 9.79 6.23 6.58 6.33 6.51 6.96 5.97
KR 9.00 9.08 10.50 9.77 6.02 7.71 6.00 7.69 7.49 9.61

Standard deviation
Observed 10.22 10.22 12.7 12.4 8.19 9.84 8.20 9.63 9.79 10.81
BR 10.58 11.65 10.5 12.8 7.89 9.62 7.63 10.02 8.8 9.8
BRWS 8.40 7.28 9.02 9.36 4.94 8.77 7.94 8.75 9.26 7.99
KR 12.9 13.02 15.76 14.93 9.26 11.67 9.25 11.47 11.45 13.87

Table 4
Hypothesis test results for testing mean of observed and simulated precipitation
series.

Station Student’s t test result for acceptance/rejection of the null
hypothesis at 5% confidence

KR BRWS BR

ELK Reject Do not reject Do not reject
ERC Reject Do not reject Do not reject
GLD Reject Do not reject Reject
HEB Do not reject Do not reject Do not reject
JHT Do not reject Do not reject Do not reject
QIN Do not reject Reject Do not reject
QSM Do not reject Reject Do not reject
SAM Do not reject Reject Do not reject
SCA Do not reject Reject Do not reject
WOL Reject Do not reject Reject
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models in the river basin for a 23 year time period (1991–2013).
Fig. 5(c) and (d) presents the correlation coefficient between basin
average annual and monthly precipitation simulated by different
downscaling models and observed precipitation for the validation
time period. BR model simulated mean annual precipitation (basin
average) series shows a high correlation (correlation coefficient of
0.88) with the observed precipitation, which means that the BR
model can capture annual variability fairly well over the basin.
For monthly basin average precipitation BR shows a satisfactory
Fig. 5. (a) Annual and (b) monthly mean precipitation, spatially averaged over the Cam
downscaling approaches are shown in (c and d).
match with the observed series and obtained correlation coeffi-
cients is 0.83, where KR performs moderately well with a monthly
correlation coefficient of 0.64. Overall beta regression based
method outperforms all other models in terms of capturing annual
and monthly variability.

Fig. 6(a)–(c) compares cumulative distribution function (CDF) of
basin-average simulated precipitation series generated from differ-
ent downscaling methods with those obtained using observed
rainfall series. Compare to KR and BRWS, the CDF computed from
BR model simulated data shows minimum deviation from the
CDF obtained using observed precipitation. CDF of basin average
precipitation obtained from BR model using historical CanESM2
GCM predictors (1983–2005) data is shown in Fig. 6(d) together
with CDF of the observed precipitation. It seems BR model fairly
well represents basin average precipitation using GCM (CanESM2)
predictors data (Tmax, Tmin, mslp, hus, u-wind and v-wind).
Another important observation is that the BR model is capable of
capturing the percent of dry days (precipitation 6 1 mm/day) ade-
quately. Using the BR, percent of dry days in the river basin calcu-
lated from simulated precipitation data is 42% for validation
period, almost equal to actual observed dry day percent (Fig. 6
(a)). Although, KR performs well in capturing percent of dry day
(42%) but it has an upward shift which refers a decreased fre-
quency of precipitation events from actual. Percent of dry days cal-
culated from the CanESM2 (48%) is also acceptable when compared
pbell River basin. The corresponding temporal correlation coefficients for different



Fig. 6. (a–c) CDF of basin average precipitation obtained from different downscaling methods using reanalysis data (1991–2013). (d) CDF of basin average precipitation
obtained from BR model using CanESM2 data (1983–2005).
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to observed dry day percent (Fig. 6(d)). However, BR model ability
to capture extreme precipitation (maximum) is very poor.

4.1.3. Basin average wet/dry spell length and seasonal precipitation
amounts

Wet and dry spell lengths are very important in water resource
planning and management especially for countries where reservoir
needs a certain water storage level for hydropower generation.
Hence, reproduction of wet/dry spell lengths along with seasonal
precipitation is a very important aspect of the downscaling pro-
cess. Although there are many definitions presented in the litera-
ture for wet/dry spell (WS/DS) length, we used the following
definition for WS/DS from WCRP (2009). A WS (DS) defined as a
maximum number of consecutive days with precipitation greater
than (less or equal to) 1 mm.

Table 5 shows the annual average total seasonal precipitation
and compares 5th, 50th and 95th percentile for both observed
and downscaled precipitation. It is found that overall performance
of BR model is better compared to KR in terms of capturing sea-
sonal total precipitation. KR performs well in spring and summer
period. However, KR simulates the high amount of precipitation
in winter and fall compare to historical precipitation which is not
acceptable in water resource planning and management. Table 6
describes annual average wet and dry spell lengths from simulated
precipitation. BR and KR perform similar in reproducing dry spell
length, but BR performs well in capturing wet spell length. It seems
from both Table (Tables 5 and 6) BR model also performs satisfac-
torily in capturing seasonal precipitation (except fall) and WS/DS
length using CanESM2 predictors data.

4.1.4. Temporal variability and spatial dependence
Assessment of temporal and spatial variability of precipitation

is high importance for water resource management (municipal
water supply, irrigation scheduling, hydropower generation, etc.).
A better understanding of rainfall variability (temporal and spatial)
is needed to better manage impacts of natural disasters (e.g. floods,
droughts) in a changing climate. Therefore, the downscaling mod-
els should capture the temporal and spatial variability of precipita-
tion accurately. We examined the performance of all downscaling
methods in capturing temporal and spatial dependence of simu-
lated precipitation series. Table 7 provides correlation coefficient
between models simulated precipitation time series and observed
precipitation at all ten downscaling locations for the validation
period. From the results, it can be concluded that the overall per-
formance of BR model conditioned to precipitation states is moder-
ately better when compared to other methods. Fig. 7 shows the
scatter plot of interstation correlation coefficients computed from
model-simulated daily precipitation series and observed precipita-
tion for all station pairs using different modeling approaches. From
the plot in Fig. 7 it can be concluded that the BR model captures



Table 5
Observed and downscaled annual average seasonal total precipitation (5th, 50th
(median) and 95th percentile) for testing period (1991–2013).

Season Rainfall amount (mm)

Simulated percentile estimate Percentage
change in median
value

Observed 5th
percentile

Median 95th
Percentile

Rainfall amount

Model using Reanalysis data for 1991–2013

Model: BR
Winter 253.61 240.32 284.92 310.25 12.34
Spring 409.33 354.23 376.86 404.21 �7
Summer 263.10 224.5 267.06 289.36 1.5
Fall 188.39 180.5 217.37 266.52 15.3

Model: BRWS
Winter 253.61 358.23 410.55 425.36 61.8
Spring 409.33 554.23 605.11 630.23 47.8
Summer 263.10 359.36 404.73 456.32 53.4
Fall 188.39 219.32 237.31 265.36 25.9

Model: KR
Winter 253.61 290.32 355.63 420.32 40.22
Spring 409.33 410.35 494.11 550.35 20.71
Summer 263.10 265.36 290.90 310.85 10.56
Fall 188.39 289.36 308.43 340.25 63.72

Downscaled precipitation data using current climate data of GCM (CanESM2)
for 1983–2005

Model: BR
Winter 204.65 178.36 195.62 230.23 �4.41
Spring 304.21 256.36 290.23 331.65 �4.59
Summer 257.99 240.36 278.36 339.36 7.89
Fall 129.99 155.36 160.36 225.36 23.35

Table 6
Annual averaged dry spell length and wet spell length of observed and downscaled
precipitation.

Obs BR BRWS KR

Model: using Reanalysis data for 1991–2013
Dry spell length
21 19 10 18

Wet spell length
23 20 14 37

Obs BR

Model: using current climate data of GCM (CanESM2) for 1983–2005

Dry spell length
26 23

Wet spell length
28 26

Table 7
Correlation coefficients obtained for observed and simulated precipitation series at
different stations in the Campbell River basin, BC, Canada (Validation period: 1991–
2013).

Stations Correlation coefficient from model generated
precipitation series

BR BRWS KR

ELK 0.6999 0.6160 0.5697
ERC 0.6804 0.5984 0.4737
GLD 0.7086 0.6321 0.5389
HEB 0.6925 0.6301 0.5674
JHT 0.6312 0.5788 0.5282
QIN 0.6842 0.6058 0.5678
QSM 0.6299 0.5831 0.4685
SAM 0.6997 0.6155 0.6075
SCA 0.6858 0.6107 0.4480
WOL 0.6906 0.6131 0.3938
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spatial correlation better than the KR. Artificial correlation has
been added during the simulation by the conditioned rainfall states
which can lead the BR model to overestimation of precipitation.
Hence, the rainfall states should be used cautiously when the spa-
tial correlation is of primary interest. The BRWS model fails to pre-
serve the spatial correlation between data series.

4.1.5. Seasonal wet days characteristics
Changes in wet days precipitation may lead to extreme hydro-

logical events such as floods and droughts. Investigation of wet
days characteristics is important for water resource planning and
management. Accurate reproduction of wet days is one of the
important aspects of statistical downscaling. Although there are
different criteria used in the literature to assess the wet days
(WD), this work follows the definition of WD from Gaur and
Simonovic (2013). According to Gaur and Simonovic (2013) if the
amount of precipitation in a day is greater than 1 mm, then it will
consider as a wet day. Fig. 8 represents 5th and 95th percentile
estimates of downscaled monthly wet days for JHT station (consid-
ered as the only location to shorten the manuscript length). Fig. 8
(a) and (b) shows WD characteristics obtained from the simulated
reanalysis monthly precipitation data where Fig. 8(c) and (d)
shows WD characteristics of downscaled data obtained using the
historical CanESM2 (1983–2005) monthly data. From Fig. 8 it can
be observed that the BR model can generate values beyond
extremes, but sometimes it underestimates extremes precipita-
tion. This may be caused by scaling the response variable (precip-
itation) to (0, 1) interval.

4.1.6. Adding value to GCM (CanESM2) projections
Future climate change projections using GCMs simulation are

very sensitive due to the existence of historical climate bias
(Liang et al., 2008). If a GCM reasonably simulates present and his-
torical climate then the credibility of future climate projection
using the same GCM simulation will be higher. This can be possible
if a downscaling model adds value to historical and present GCM
climate variables. We conducted an experiment to explore whether
BR model adds value to GCMs historical climate change following
Racherla et al. (2012). The steps we followed for this experiment
are given below:

Step-I: First we divided CanESM2 simulated historical precipita-
tion data into two-time slices e.g. 1983–1994 (T1 hereafter) and
1995–2005 (T2 hereafter).
Fig. 7. Interstation correlation coefficients for different downscaling approaches.



Fig. 8. Characteristics of monthly wet day extremes for observed and simulated precipitation at the JHT station. (a and b) Obtained from NCEP/NCAR (time period: 1991–
2013). (c and d) Obtained from CanESM2 (time period: 1983–2005).
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Step-II: ANUSPLIN and BR simulated precipitation data also
divided into same time slices following step-I.
Step-III: Precipitation biases are calculated by subtracting daily
historical precipitation data (ANUSPLIN) from CanESM2/BR
simulated precipitation data. These biases are calculated for
T1 and T2 time period and converted to seasonal mean precip-
itation biases shown in Supplementary Fig. 1 (SF1).
Step-IV Historical climate change (T2 minus T1) is calculated
using above mentioned three data sets (ANUSPLIN, CanESM2
and BR simulated precipitation) and presented in Supplemen-
tary Fig. 2 (SF2).

It has been found that a wet bias is present in CanESM2 T1 time
period (SF1 (a)) especially in fall and winter season where a dry
bias has been found in T2 time period except spring season (SF1
(b)). The biases are reduced in BR simulated precipitation in both
time periods except GLD station (SF1 (c) and (d)). Downscaled
changes in seasonal precipitation between T1 and T2 time periods
are presented in SF2. The most visible observed positive changes in
precipitation have found in fall and winter, where a small decreas-
ing trend found in summer time (SF2 (a)). Evidently observed
changes are not reproduced well in CanESM2 except summer
(SF2 (b)). However, BR model fairly reproduces observed changes
except winter season (SF2 (c)). From this experiment, it can be con-
cluded that GCMs historical bias can be reduced using BR model
but not for all seasons and all stations. This limitation may be over-
come if we consider different GCMs for the same experiment.

4.2. Future projection using GCM simulation

The BR model applied with standardized predictor data pertain-
ing to RCP 2.6 RCP4.5 and RCP 8.5 scenarios of CanESM2 where RCP
2.6 represents low carbon emission scenario, RCP 4.5 referred as
intermediate carbon emission scenario and RCP 8.5 is high emis-
sion scenario. To investigate the impact of future climate change
on precipitation under different emission scenarios, a future time
slice (2036–2065) is selected.

Fig. 9 represents CDF of daily precipitation at four downscaling
locations. These four downscaling stations are selected based on
their geographical location. JHT located near John hart dam where
QIN and SCA are located near Strathcona dam. All of these three
stations are located in downstream of the Campbell River basin
where WOL is in upstream of the river.

The CDFs obtained for three scenarios are similar to each other
and almost match with the CDF of observed precipitation (1991–
2013). However, a downward shift pertaining to all three scenarios
can be observed for JHT which indicates an increased frequency of
high precipitation events during 2036–2065 compared to 1991–
2013 (Fig. 9(a)). JHT station is located in downstream of the Camp-
bell River and surrounded by forest. According to Sheil and
Murdiyarso (2009) winds travel through forests can produce more
than twice times precipitation compare to when they travel over
the land which can be the reason of increased precipitation events
at JHT. Although we only compared results obtained from a single
GCM output using BR. More variation can be expected if the pre-
sent analysis is performed with multiple GCMs (Werner, 2011).

4.2.1. Projected future seasonal precipitation changes during 2036–
2065

Tables 8 and 9 provide information on estimated changes in
number of wet days and seasonal precipitation amounts during
2036–2065. Percentage change in the median of any scenario is
estimated with respect to observed data (1991–2013). For all three
scenarios, summer precipitation amounts are going to decrease



Fig. 9. CDF of simulated future (2036–2065) daily precipitation using CanESM2 predictor data under three emission scenarios (RCP 2.6, RCP 4.5 and RCP8.5) at different
locations compare with observed precipitation (1991–2013).

Table 8
Seasonal changes in numbers of wet days during 2036–2065.

Season Scenario

Obs (1991–2013) RCP 2.6 RCP 4.5 RCP 8.5

Median estimate of
number of wet days

Median estimate of
number of wet days

Percentage change
in median estimate

Median estimate of
number of wet days

Percentage change
in median estimate

Median estimate of
number of wet days

Percentage change
in median estimate

Winter 23 22 �4 26 13 26 13
Spring 19 24 26 23 21 24 26
Summer 16 15 �6 13 �18 15 �6
Fall 15 18 20 24 60 23 53
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along with wet days. Maximum 58% can be decreased in summer
precipitation amount where wet days can be reduced up to 18%.
The changes detected for all three scenarios show precipitation
amount in the fall is going to increase with wet days. For RCP
8.5, the increase is 22% in precipitation and 13% in wet days during
winter time. For RCP 2.6 and RCP 4.5 both project a small amount
of precipitation increase in spring time but the wet days increases
26% and 21% respectively.
5. Summary and conclusions

In this study, a new multisite statistical downscaling model is
proposed for generating precipitation for a river basin using large
scale climate variables conditioned to daily rainfall states. The pro-
posed downscaling approach can reproduce spatiotemporal struc-
ture of the historical data at daily time scale, in addition to other
statistics. The proposed downscaling method involves two main
steps: (1) rainfall state generation using CART; and (2) generation
of multisite precipitation amounts using multivariate BR model. To
capture multicollinearity and reduce dimensionality we combine
principal components analysis (PCA) with the BR. First five
principal components are selected for this study which explains
97% variability of the original data.

CART constructs a classification tree based on the categorical
and continuous predictors to generate precipitation state of the
river basin. Lag-1 precipitation is used to prune the classification
tree. The multisite precipitation sequences in the Campbell River
basin (British Columbia, Canada) are generated using beta regres-
sion conditioned to precipitation states in the river basin. As BR
model estimates mean precipitation values, perturbation method
is added to the model for stochastic generation of precipitation
outside the observed range following King et al. (2014). The model
performs well in terms of preserving temporal and spatial depen-
dence. Although BR overestimates spatial interstation cross-
correlation.

Since there is no clear guidance for determining the optimal
number of principal components, we considered a number of com-
ponents which represent a large fraction of the variability (here
97%) contained in the original data. However, with availability of
large data set obtained from the GCM simulated climate variables
we may follow the step wise procedure described by Srivastav and



Table 9
Seasonal changes in precipitation amount during 2036–2065.

Season Scenario

Obs (1991–2013) RCP 2.6 RCP 4.5 RCP 8.5

Median estimate of
number of wet days

Median estimate of
number of wet days

Percentage change
in median estimate

Median estimate of
number of wet days

Percentage change
in median estimate

Median estimate of
number of wet days

Percentage change
in median estimate

Winter 253 260 2 289 13 311 22
Spring 409 425 3 437 6 485 18
Summer 263 116 �55 110 �58 108 �58
Fall 188 236 25 252 33 267 41
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Simonovic (2014). BR method is a data driven method which builds
a relationship between climate variables and daily precipitation. It
is considered a stationary relationship among predictand and pre-
dictors variable (precipitation) which may not always be true. The
basic relationships between climate variables controlled by con-
servation laws are not going to alter because of climate change.
However, if the downscaling model is calibrated under stationary
conditions and regional warming (e.g. El Nino-Southern Oscilla-
tion) influences the convective precipitation fraction then the sta-
tionary relationship in the downscaling process may indeed
change. Salvi et al. (2015) observed that the kernel regression
(KR) based statistical downscaling model failed to capture the
changes in mean precipitation under non-stationary climate. They
also identified that the assumption of stationarity was violated
during the model testing period. It may be the reason for the
changes in climate pattern occurring at large-scale or interference
by some local factors e.g. urbanization. The urban areas have differ-
ent climatology (Kishtawal et al., 2010; Shastri et al., 2015) and the
effect of urbanization is not included in the BR model, therefore the
same outcomes might be possible from BR if we test the BR model
under non-stationary condition. Hence, identifying the exact rea-
son of non-stationary behavior and validating the proposed model
under non-stationary climate condition may be considered as a
future scope of the present work.

Another important factor is link function in beta regression
model. Several link functions are available such as logit, probit
and log–log link. In this study we used only logit link function. Dif-
ferent outcomes may be expected if other link functions are used.
In the present study, we used only one GCM output for downscal-
ing. Future precipitation estimation may be different for use of
other GCMs. Uncertainty modeling of downscaled precipitation
from different GCMs is a potential research area under
consideration.

The main advantage of using BR based downscaling model is
multisite rainfall sequence generation which captures the tempo-
ral and spatial variability of the predictand at each downscaled
location. The proposed model is computationally inexpensive and
ideal for practical engineering application. It can use any number
of predictor variables which may be considered the scope of future
work.
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